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ADC Design



Three-Step Flash ADC with Interstage Gain
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Pipelined ADC
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Pipelined ADC Stage k
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1-bit/Stage Pipeline Implementation
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1-bit/Stage Pipeline Implementation 
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ADC Types

• Flash

• Pipeline

• Two-Step Flash

• Multi-Step Flash

• Cyclic (algorithmic)

• Interpolating

• Successive Approximation

• Folded

• Dual Slope

• Single-bit

• Multi-bit

• First-order

• Higher-order

• Continuous-time 

Nyquist Rate Over-Sampled



Cyclic (Algorithmic) ADC 
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• Re-use Pipelined Stage

• Small amount of hardware

• Effective thru-put decreases



ADC Types

• Flash

• Pipeline

• Two-Step Flash

• Multi-Step Flash

• Cyclic (algorithmic)

• Interpolating

• Successive Approximation

• Folded

• Dual Slope

• Single-bit

• Multi-bit

• First-order

• Higher-order

• Continuous-time 

Nyquist Rate Over-Sampled



Interpolating ADC 

• Amplifiers are finite-gain saturating

• Shown for 4-bit

• Clocked comparators usually regenerative

• Reduces Offset Requirements for Comparators
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ADC Types

• Flash

• Pipeline

• Two-Step Flash

• Multi-Step Flash

• Cyclic (algorithmic)

• Interpolating

• Successive Approximation

• Folded

• Dual Slope

• Single-bit

• Multi-bit

• First-order

• Higher-order

• Continuous-time 

Nyquist Rate Over-Sampled



SAR ADC 

• DAC Controller may be simply U/D counter

• Binary search controlled by Finite State Machine is faster

• SAR ADC will have no missing codes if DAC is monotone

• Not very fast but can be small
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ADC Types

• Flash

• Pipeline

• Two-Step Flash

• Multi-Step Flash

• Cyclic (algorithmic)

• Interpolating

• Successive Approximation

• Folded

• Dual Slope

• Single-bit

• Multi-bit

• First-order

• Higher-order

• Continuous-time 

Nyquist Rate Over-Sampled

And Single Slope



Single-Slope ADC
Sometimes Termed Integrating ADC

Falling edge of φ synchronous with respect to falling edge of CLK
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φ 

VX

Integrate
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t

Can convert asynchronously wrt CCLK or can be a clocked ADC where 

conversion clock signal is synchronous wrt CCLK.

Output valid when comparator output  goes low

Note VREF not explicitly shown in ADC architecture
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Single-Slope ADC

Operation:
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Single-Slope ADC

IX,VREF,R,C,TCLK  must satisfy the relationship

nX
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Benefits:   Very simple structure and can provide a low-cost easy solution for low 

speed applications

Limitations:

• Process variations make it difficult to satisfy (1)

• C is large and must be off chip

• Linearity of C important (since off-chip)

• Nonlinearity in IX degrades performance

• ROUT of IX degrades performance

• Slow

• Not widely used

(1)

Options for improving performance: 

• Introduce self-calibration cycle to satisfy (1) by trimming IX or C

• Use high-impedance current source

• Use OP-Amp Based RC integrator
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Dual-Slope ADC
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• Output valid when comparator output transitions to Low

• Must set RC time constants and CCLK so output does not saturate

• Shown as noninverting integrator but slight modification will also work with 

inverting integrator

• Other integrator structures could be used

• Can leave one or more clock cycles between integrate up and integrate 

down
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Dual-Slope ADC R
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Dual-Slope ADC R
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• Not dependent upon R, C, or TCLK (provided integrator does not saturate)

• Very simple structure that can give good results and cost can be low

• Inherently monotone

• Capacitor large and likely must be off-chip

• Linearity of capacitor is important (particularly of concern when off-chip)

• Slow

• Not widely used

Benefits

Limitations:



Noise in ADCs and DACs

ADC DAC

Noise in electronic devices and components introduce noise in electronic systems

Noise is of major concern in ADCs,  DADs, and Op Amps

Beyond the scope of this course to go into lots of details about effects of device 

noise in these components but will provide a brief introduction

Devices that contribute noise :

Capacitors and Inductors are noiseless:



Noise in DACs
Resistors and transistors contribute device noise but 

what about charge redistribution DACs ?

RVn(t)

Noise in resistors:

Noise spectral density of Vn(t) at all frequencies 4kTRS =

k:  Boltzmann’s Constant

T:  Temperature in Kelvin

This is white noise ! 

k=1.38064852 × 10-23 m2 kg s-2 K-1

At 300K,  kT=4.14 x10-21



Noise in DACs
Resistors and transistors contribute device noise but 

what about charge redistribution DACs ?

Noise in linear circuits:
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Alternately and equivalently:

Difficult to obtain !



VIN C

R VOUT

Example:  First-Order RC Network
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Noise transfer function:



Example:  First-Order RC Network
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From a standard change of variable with a trig identity, it follows that 

• The continuous-time noise voltage has an RMS value that is independent of R

• Noise contributed by the resistor is dependent only upon the capacitor value C

• This is often referred to at kT/C noise and it can be decreased at a given T  

only by increasing C
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Sample and Hold Circuits
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Basic S/H circuit

Slightly more complicated S/H used for input S/H

This simple structure used in some applications

Noise characteristics of S/H similar to that of 

these simple samplers

Actually a Track and Hold Circuit



Sample and Hold Circuits
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During Track Mode 

When switch is opened to take sample, noise on C is captured on C 

This noise becomes input noise to the ADC

RVn(t)

Recall noise in resistor modeled as noise voltage source in series with R
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Sample and Hold Circuits

If switch opens fast, noise on C due to R is captured as Vn(kT)



t

Vn(t)
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t
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Vn(mT) is a discrete-time sequence obtained by sampling continuous-time 

noise waveform

T is the period of the sampler

Sample and Hold Circuits

RMS value of noise input to pipelined ADC  is that of the discrete time noise sequence 
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Sample and Hold Circuits



Theorem 1 If V(t) is a continuous-time zero-mean noise source 

and <V(kT)> is a sampled version of V(t) sampled at times T, 2T, ….   

then the RMS value of the continuous-time waveform is the same as 

that of the sampled version of the waveform.  This can be expressed 

as
RMS RMS

ˆ=V V

Theorem 2 If V(t) is a continuous-time zero-mean noise signal and 

<V(kT)> is a sampled version  of V(t) sampled at times T, 2T, ….   then the 

standard deviation  of the random variable  V(kT), denoted as  

satisfies the expression
V̂



ˆ RMS RMSV

ˆ = =V V

From Theorem 1 we obtain the RMS value of the switched capacitor sampler
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Sample and Hold Circuits
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RMS noise at output of basic SC S/H is independent of R but dependent upon C



Stay Safe and Stay Healthy !



End of Lecture 38


